Future Models for Engineering Education

AAU

Euan Lindsay

Professor of PBL and Digitalisation

in Engineering Education

edl@plan.aau.dk

CSU Engineering

 Charles Sturt University in Bathurst, Australia

- Regional University, majority of students are online and part-time
- Strong links to local industry and community

What would you do if you had a blank page?

The opportunity of a blank page is neither

It's actually an obligation, not an opportunity

The page isn't actually blank

AALBORG UNIVERSITET

Curricula are evolving

What students should learn

• What graduates should be able to do

• Who professionals should be

Reports are consistent on the future

OECD Education 2030 Framework

Top 10 skills of 2025

Type of skill

Problem-solving

Self-managementWorking with people

Technology use and development

Critical thinking and analysis

Complex problem-solving

Analytical thinking and innovation

Active learning and learning strategies

Leadership and social influence

Technology use, monitoring and control

WØRLD ECØNOMIC FORUM

Technology design and programming

Resilience, stress tolerance and flexibility

Reasoning, problem-solving and ideation

Source: Future of Jobs Report 2020, World Economic Forum.

The CSU Engineering model

		Challenge/Portfolio /Thesis pillar	Performance Planning and Review pillar	Civil Engineering Topic Tree pillar	
Phase 3	4th Placement - Professional Cadet	Engineering Capstone Thesis	Engineering Portfolio - Professional (ENG592) 2 pt	Advanced Topics in Civil Englineering (ENG571) 16pt	
		(ENG599) 32pt	Performance Planning and Review - Professional Engineer (ENG580) 4pt		
	3rd Placement - Senior Cadet	Engineering Portfolio – Senior Cadet (ENG490) 28pt	Performance Planning and Review - Senior Cadet (ENG480) 6pt	Topic Tree - Senior Cadet Engineer (ENG473) 24pt	
Phase 2	2nd Placement - Intermediate Cadet	Engineering Cornerstone Thesis (ENG399) 24pt	Performance Planning and Review - Intermediate Cadet (ENG380) 6pt	Topic Tree – Intermediate Cadet Engineer (ENG373) 24pt	
	1st Placement - Junior Cadet	Engineering Portfolio – Junior Cadet (ENG290) 28pt	Performance Planning and Review – Junior Cadet (ENG280) 6pt	Topic Tree - Junior Cadet Engineer (ENG273) 24pt	
Phase 1	Face to Face - Student Engineer	Engineering Challenge 3 (ENG261) 14pt	Performance Planning and Review - Student Engineer (ENG180) 4pt	Topic Tree – Student Engineer (ENG173) 36pt	
		Engineering Challenge 2 (ENG162) 14 pt			
		Engineering Challenge 1 (ENG161) 14pt		Topic Tree - Introductory	
		Engineering Challenge O (ENG160) 2pt		(ENG171) 12pt	

PBL then Workplace learning – stepping up the jeopardy each year
 Supported by an online, on demand technical curriculum

AALBORG UNIVERSITET

PBL / Workplace Learning

Identity (trans)formation

Information sought on this form is required to administer immigration, customs, quarantine, statistical, health, wildlife and other currency laws of Australia and its collection is authorised by legislation. It will be disclosed only to agencies administering these areas and authorised or required to receive it under Australian law. Form 1442i *Privacy notice* is available from the department's website **www.border.gov.au/allforms/**

07161501

© Commonwealth of Australia 2017 15 (Design date 07/17)

Student Engineers Not

Engineering Students

Key trends in Higher Education

- Digitalisation and personalisation
- Asynchronous learning
- PBL / Workplace learning
- Identity (trans)formation
- Lifelong learning

- Artificial Intelligence
- Employability (not employment)
- Diversity
- Macro-credentials vs microcredentials
- Unbundling of university

It is not about the technology it is about what technology can do

- What seems like a technology conversation is actually a learning conversation
- It is confounded because in the early stages there is no way other than the technology to achieve the outcome in question

Al will crush the old ways of teaching

Asynchronous, on demand curriculum

- Access when you are ready
 Or when you need it for your project
- Stop halfway through

- Choose your feedback speed
- Pause
- Repeat

Fine-grained Curriculum

• Digital education doesn't have to fit the standard sizes

• You can be more flexible in how you break down your curriculum

Contemporary university curricula are driven more by the structures than by the pedagogy / syllabus

Courses are the shipping containers of higher education

- We fill the with lectures, laboratories, exams
- Defined by the subject
- Comes in standard sizes and shapes (ECTS)
 - Shipping containers work for physical goods
 - Higher ed is becoming a digital good

The Topic Tree

Underpinning technical content delivered online and on-demand

Each topic scaled to take around 3 hours to complete

Mostly "soft" prerequisites – recommended pathways rather than required pathways

Compulsory Schedules

		Challenge/Portfolio /Thesis pillar	Performance Planning and Review pillar	Civil Engineering Topic Tree pillar	G: For all Geotechnical Engineers
Phase 3	4th Placement - Professional Cadet	Engineering Capstone Thesis (ENG599) 32pt	Engineering Portfolio - Professional (ENG592) 2 pt	Advanced Topics in Civil	C. For all Structural Engineers
			Performance Planning and Review - Professional Engineer (ENG580) 4pt	Engineering (ENG571) 16pt	
	3rd Placement - Senior Cadet	Engineering Portfolio – Senior Cadet (ENG490) 28pt	Performance Planning and Review - Senior Cadet (ENG480) 6pt	Topic Tree – Senior Cadet Engineer (ENG473) 24pt	W: For all Water Engineers
Phase 2	2nd Placement - Intermediate Cadet	Engineering Cornerstone Thesis (ENG399) 24pt	Performance Planning and Review - Intermediate Cadet (ENG380) 6pt	Topic Tree – Intermediate Cadet Engineer (ENG373) 24pt	C. For all Civil Engineers
	1st Placement - Junior Cadet	Engineering Portfolio – Junior Cadet (ENG290) 28pt	Performance Planning and Review - Junior Cadet (ENG280) 6pt	Topic Tree – Junior Cadet Engineer (ENG273) 24pt	C: For all Civil Engineers
Phase 1	Face to Face - Student Engineer	Engineering Challenge 3 (ENG261) 14pt Engineering Challenge 2 (ENG162) 14 pt	Performance Planning and Review – Student Engineer (ENG180) 4pt	Topic Tree – Student Engineer (ENG173) 36pt	
		Engineering Challenge 1 (ENG161) 14pt		Topic Tree – Introductory (ENG171) 12pt	A: For all Cadet Engineers on placemer
		Engineering Challenge O (ENG160) 2pt			

Not linear learning

Activity by student

Mastery Learning

- Everybody gets a 10
- Eventually
- But only when they have mastered the material

shutterstock.com · 475320883

Lifelong learning (& Employability)

Diversity

- More people coming to university
- Different people coming to university
- Gender
- Age
- Income
- Location of origin
- Language

- Motivation
- Capacity
- Prior Knowledge

Unbundling of Universities

Universities no longer have a monopoly on:

	Taught	Not taught
Assessed	Traditional university subjects	Portfolio
Not assessed	MOOCs	Certificate of attendance

- The knowledge
- The students
- The learning environment
- The credentials

What do these trends mean for models of Engineering Education?

- Active Learning approaches will become even more important
 - It is what distinguishes us from just being a commodity
- Our students will be on campus and online
 - Students want to come back to campus
 - But only for the "good" bits, not the "bad" bits
- Our students will learn some things without us
 - We will automate our "least valuable" time
- We will know more about how they are learning
- Our student cohort won't look the same as it always did
- The boundaries of the university will become more "fuzzy"

Future Models for Engineering Education

AAU

Euan Lindsay

Professor of PBL and Digitalisation

in Engineering Education

edl@plan.aau.dk

